×ðÁú¿­Ê±¹ÙÍøµÇ¼

Å£¶Ùµü´ú¹«Ê½ python ÓÃpython±àдţ¶Ùµü´ú¹«Ê½

Å£¶Ùµü´ú¹«Ê½¿ÉÓÃÓÚÇó½â·½³Ì f(x) = 0 µÄ¸ù £¬ÆäʹÓõü´úÀú³Ì x[n+1] = x[n] – f(x[n]) / f'(x[n]) £¬ÆäÖÐ f(x) ΪĿµÄ·½³Ì £¬f'(x) ΪÆäµ¼Êý¡£python ´úÂëʵÏÖÁ˸ù«Ê½ £¬°üÀ¨ÒÔÏ°취£º³õʼ»¯ÍƲâÖµ x0¡£Æ¾Ö¤µü´ú¹«Ê½¸üРx Öµ¡£µ±¸üÐÂÖµÓëÇ°Ò»´ÎÖµÏà²îСÓÚÈݲîʱ £¬·µ»Ø¸ù¡£ÈôÊǵִï×î´óµü´ú´ÎÊý £¬ÔòÅ׳öÒì³£ £¬ÅúעδÕÒµ½¸ù¡£

Å£¶Ùµü´ú¹«Ê½ Python ʵÏÖ

Å£¶Ùµü´ú¹«Ê½

Å£¶Ùµü´ú¹«Ê½ÓÃÓÚÇó½â·½³Ì f(x) = 0 µÄ¸ù¡£¸Ã¹«Ê½»ùÓÚÒÔϵü´úÀú³Ì£º

x[n+1] = x[n] - f(x[n]) / f'(x[n])

µÇ¼ºó¸´ÖÆ

ÆäÖУº

Á¬Ã¦Ñ§Ï°¡°PythonÃâ·ÑѧϰÌõ¼Ç£¨ÉîÈ룩¡±£»

  • x[n] Êǵü´úÀú³ÌµÄµÚ n ´Îµü´úÖµ
  • f(x) ÊÇÄ¿µÄ·½³Ì
  • f'(x) ÊÇ f(x) µÄµ¼Êý

Python ʵÏÖ

ÒÔÏ Python ´úÂëʵÏÖÁËÅ£¶Ùµü´ú¹«Ê½£º

def newton_method(f, fprime, x0, tol=1e-6, max_iter=100):
    """
    Å£¶Ùµü´ú·¨Çó½â·½³Ì f(x) = 0 µÄ¸ù¡£

    ²ÎÊý£º
        f: Ä¿µÄ·½³Ì
        fprime: Ä¿µÄ·½³ÌµÄµ¼Êý
        x0: ³õʼÍƲâÖµ
        tol: Èݲî
        max_iter: ×î´óµü´ú´ÎÊý

    ·µ»Ø£º
        ·½³ÌµÄ¸ù£¨½üËÆÖµ£©
    """

    x = x0
    for i in range(max_iter):
        x_prev = x
        x = x - f(x) / fprime(x)
        if abs(x - x_prev) <p><strong>ʹÓÃʾÀý</strong></p><p>¿ÉÒÔʹÓÃÒÔÏ´úÂëÇó½â·½³Ì f(x) = x^2 - 1£º</p><pre class="brush:php;toolbar:false">import numpy as np

def f(x):
    return x**2 - 1

def fprime(x):
    return 2 * x

root = newton_method(f, fprime, 1.5)
print(root)  # Êä³ö£ºÔ¼ 1.0

µÇ¼ºó¸´ÖÆ

ÒÔÉϾÍÊÇÅ£¶Ùµü´ú¹«Ê½ python ÓÃpython±àдţ¶Ùµü´ú¹«Ê½µÄÏêϸÄÚÈÝ £¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡

ÃâÔð˵Ã÷£ºÒÔÉÏչʾÄÚÈÝȪԴÓÚÏàÖúýÌå¡¢ÆóÒµ»ú¹¹¡¢ÍøÓÑÌṩ»òÍøÂçÍøÂçÕûÀí £¬°æȨÕùÒéÓë±¾Õ¾ÎÞ¹Ø £¬ÎÄÕÂÉæ¼°¿´·¨Óë¿´·¨²»´ú±í×ðÁú¿­Ê±¹ÙÍøµÇ¼ÂËÓÍ»úÍø¹Ù·½Ì¬¶È £¬Çë¶ÁÕß½ö×ö²Î¿¼¡£±¾ÎĽӴýתÔØ £¬×ªÔØÇë˵Ã÷À´ÓÉ¡£ÈôÄúÒÔΪ±¾ÎÄÇÖÕ¼ÁËÄúµÄ°æȨÐÅÏ¢ £¬»òÄú·¢Ã÷¸ÃÄÚÈÝÓÐÈκÎÉæ¼°ÓÐÎ¥¹«µÂ¡¢Ã°·¸Ö´·¨µÈÎ¥·¨ÐÅÏ¢ £¬ÇëÄúÁ¬Ã¦ÁªÏµ×ðÁú¿­Ê±¹ÙÍøµÇ¼ʵʱÐÞÕý»òɾ³ý¡£

Ïà¹ØÐÂÎÅ

ÁªÏµ×ðÁú¿­Ê±¹ÙÍøµÇ¼

18523999891

¿É΢ÐÅÔÚÏß×Éѯ

ÊÂÇéʱ¼ä£ºÖÜÒ»ÖÁÖÜÎå £¬9:30-18:30 £¬½ÚãåÈÕÐÝÏ¢

QR code
ÍøÕ¾µØͼ