×ðÁú¿­Ê±¹ÙÍøµÇ¼

ÔÚLinuxϵͳÉÏʹÓÃPyCharm¾ÙÐÐÉñ¾­ÍøÂ翪·¢µÄÉèÖÃÒªÁì

ÔÚlinuxϵͳÉÏʹÓÃpycharm¾ÙÐÐÉñ¾­ÍøÂ翪·¢µÄÉèÖÃÒªÁì

Ëæ×ÅÈ˹¤ÖÇÄܺÍÉî¶ÈѧϰµÄ¿ìËÙÉú³¤£¬Éñ¾­ÍøÂç³ÉΪÁËÒ»¸öÈÈÃŵÄÑо¿ÁìÓò¡£PyCharm×÷Ϊһ¿îÇ¿Ê¢µÄPython¼¯³É¿ª·¢ÇéÐΣ¬¿ÉÒÔΪÉñ¾­ÍøÂ翪·¢Ìṩ±ã½Ý¶ø¸ßЧµÄ¹¤¾ßºÍ¹¦Ð§¡£±¾ÎĽ«ÏÈÈÝÔÚlinuxϵͳÉÏʹÓÃpycharm¾ÙÐÐÉñ¾­ÍøÂ翪·¢µÄÉèÖÃÒªÁ죬²¢Ìṩ´úÂëʾÀý¡£

°ì·¨1£º×°ÖÃPyCharm

Ê×ÏÈ£¬ÎÒÃÇÐèÒªÏÂÔغÍ×°ÖÃPyCharm¡£Äú¿ÉÒÔÔÚJetBrainsµÄ¹Ù·½ÍøÕ¾ÉÏÕÒµ½PyCharmµÄ×îа汾¡£Ñ¡ÔñÊÊÓÃÓÚLinuxϵͳµÄ°æ±¾£¬²¢Æ¾Ö¤¹Ù·½µÄ×°ÖÃÖ¸ÄϾÙÐÐ×°Öá£×°ÖÃÍê³Éºó£¬Æô¶¯PyCharm¡£

°ì·¨2£º½¨ÉèPythonÐéÄâÇéÐÎ

ÔÚ¾ÙÐÐÉñ¾­ÍøÂ翪·¢Ö®Ç°£¬ÎÒÃÇÐèÒª½¨ÉèÒ»¸öPythonÐéÄâÇéÐΡ£ÐéÄâÇéÐÎʹµÃÿ¸öÏîÄ¿¶¼ÓÐ×ÔÁ¦µÄPythonÚ¹ÊÍÆ÷ºÍ¿â£¬×èÖ¹Á˲î±ðÏîÄ¿Ö®¼äµÄ³åÍ»¡£ÔÚÖÕ¶ËÖÐÔËÐÐÒÔÏÂÏÂÁÉè²¢¼¤»îÐéÄâÇéÐΣº

python3 -m venv myenv
source myenv/bin/activate

µÇ¼ºó¸´ÖÆ

°ì·¨3£º×°ÖÃËùÐèµÄPython¿â

Éñ¾­ÍøÂ翪·¢Í¨³£ÐèҪʹÓÃһЩµÚÈý·½Python¿â£¬ÈçTensorFlow¡¢KerasºÍPyTorchµÈ¡£ÔÚ¼¤»îµÄÐéÄâÇéÐÎÖУ¬Ê¹ÓÃpipÏÂÁîÀ´×°ÖÃÕâЩ¿â¡£Ê¾Àý´úÂëÈçÏ£º

pip install tensorflow
pip install keras
pip install torch

µÇ¼ºó¸´ÖÆ

°ì·¨4£º½¨É蹤³Ì

ÔÚPyCharmµÄ½çÃæÖУ¬µã»÷”Create New Project”À´½¨ÉèÒ»¸öÐµĹ¤³Ì¡£Ñ¡ÔñÒ»¸öºÏÊʵÄĿ¼£¬²¢ÉèÖÃÚ¹ÊÍÆ÷ΪÐéÄâÇéÐÎÖеÄPythonÚ¹ÊÍÆ÷¡£

°ì·¨5£º±àд´úÂë

ÔÚ¹¤³ÌÖн¨ÉèÒ»¸öPythonÎļþ£¬ÀýÈç”neural_network.py”¡£ÔÚ¸ÃÎļþÖУ¬ÎÒÃǽ«±àдÉñ¾­ÍøÂçµÄ´úÂë¡£ÒÔÏÂÊÇÒ»¸ö¼òÆÓµÄÉñ¾­ÍøÂçµÄ´úÂëʾÀý£º

import tensorflow as tf
from tensorflow import keras
import numpy as np

# ¼ÓÔØÊý¾Ý¼¯
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# ¹éÒ»»¯
train_images = train_images / 255.0
test_images = test_images / 255.0

# ¹¹½¨Ä£×Ó
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])

# ±àÒëÄ£×Ó
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# ѵÁ·Ä£×Ó
model.fit(train_images, train_labels, epochs=10)

# ÆÀ¹ÀÄ£×Ó
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)

µÇ¼ºó¸´ÖÆ

°ì·¨6£ºÔËÐдúÂë

ÔÚPyCharmµÄ½çÃæÖУ¬ÓÒ¼üµã»÷´úÂëÎļþ£¬²¢Ñ¡Ôñ”Run”À´ÔËÐдúÂë¡£PyCharm½«»áŲÓÃÐéÄâÇéÐÎÖеÄPythonÚ¹ÊÍÆ÷À´Ö´ÐдúÂë¡£Äú¿ÉÒÔÔÚ¿ØÖÆ̨ÖÐÉó²é´úÂëµÄÊä³öЧ¹û¡£

×ܽ᣺

±¾ÎÄÏÈÈÝÁËÔÚlinuxϵͳÉÏʹÓÃpycharm¾ÙÐÐÉñ¾­ÍøÂ翪·¢µÄÉèÖÃÒªÁ졣ͨ¹ýƾ֤ÒÔÉÏ°ì·¨¾ÙÐвÙ×÷£¬Äú¿ÉÒÔÔÚPyCharmÖÐÇáËÉ¿ª·¢ºÍµ÷ÊÔÉñ¾­ÍøÂç´úÂë¡£ËäÈ»£¬ÕâÖ»ÊÇÒ»¸ö¼òÆÓµÄʾÀý£¬Äú¿ÉÒÔƾ֤×Ô¼ºµÄÐèÇóÀ´±àдԽ·¢ÖØ´óµÄÉñ¾­ÍøÂç´úÂë¡£×£ÄúÔÚÉñ¾­ÍøÂçÑо¿ºÍ¿ª·¢ÖÐÈ¡µÃºÃЧ¹û£¡

ÒÔÉϾÍÊÇÔÚLinuxϵͳÉÏʹÓÃPyCharm¾ÙÐÐÉñ¾­ÍøÂ翪·¢µÄÉèÖÃÒªÁìµÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡

ÃâÔð˵Ã÷£ºÒÔÉÏչʾÄÚÈÝȪԴÓÚÏàÖúýÌå¡¢ÆóÒµ»ú¹¹¡¢ÍøÓÑÌṩ»òÍøÂçÍøÂçÕûÀí£¬°æȨÕùÒéÓë±¾Õ¾Î޹أ¬ÎÄÕÂÉæ¼°¿´·¨Óë¿´·¨²»´ú±í×ðÁú¿­Ê±¹ÙÍøµÇ¼ÂËÓÍ»úÍø¹Ù·½Ì¬¶È£¬Çë¶ÁÕß½ö×ö²Î¿¼¡£±¾ÎĽӴýתÔØ£¬×ªÔØÇë˵Ã÷À´ÓÉ¡£ÈôÄúÒÔΪ±¾ÎÄÇÖÕ¼ÁËÄúµÄ°æȨÐÅÏ¢£¬»òÄú·¢Ã÷¸ÃÄÚÈÝÓÐÈκÎÉæ¼°ÓÐÎ¥¹«µÂ¡¢Ã°·¸Ö´·¨µÈÎ¥·¨ÐÅÏ¢£¬ÇëÄúÁ¬Ã¦ÁªÏµ×ðÁú¿­Ê±¹ÙÍøµÇ¼ʵʱÐÞÕý»òɾ³ý¡£

Ïà¹ØÐÂÎÅ

ÁªÏµ×ðÁú¿­Ê±¹ÙÍøµÇ¼

18523999891

¿É΢ÐÅÔÚÏß×Éѯ

ÊÂÇéʱ¼ä£ºÖÜÒ»ÖÁÖÜÎ壬9:30-18:30£¬½ÚãåÈÕÐÝÏ¢

QR code
ÍøÕ¾µØͼ