×ðÁú¿­Ê±¹ÙÍøµÇ¼

cµÄk´Î·½Å£¶Ùµü´ú¹«Ê½

k ´Î·½Å£¶Ùµü´ú¹«Ê½ÓÃÓÚÇó½â·½³Ì (x^c = k) µÄ¸ù ¡£Æ乫ʽΪ£º$$x_{n+1} = x_n – \frac{x_n^c – k}{cx_{n}^{c-1}}$$ ¡£µü´ú¹«Ê½µÄÊÕÁ²ÐÔÈ¡¾öÓÚ c µÄÖµ£¬µ± (0

Å£¶Ùµü´ú¹«Ê½µÄ k ´Î·½ÍØÕ¹

Å£¶Ùµü´ú¹«Ê½ÊÇÒ»¸öÇ¿Ê¢µÄ¹¤¾ß£¬ÓÃÓÚÇó½â·ÇÏßÐÔ·½³ÌµÄ¸ù ¡£ËüµÄ»ù±¾ÐÎʽÈçÏ£º

$$x_{n+1} = x_n – \frac{f(x_n)}{f'(x_n)}$$

ÆäÖУº

  • (x_n) ÊÇµÚ n ´Îµü´úµÄ½üËÆÖµ
  • (f(x)) ÊÇËùÇó½âµÄº¯Êý
  • (f'(x)) ÊÇ (f(x)) µÄµ¼Êý

k ´Î·½Å£¶Ùµü´ú¹«Ê½

c µÄ k ´Î·½Å£¶Ùµü´ú¹«Ê½ÊÇÅ£¶Ùµü´ú¹«Ê½µÄÍØÕ¹£¬ÓÃÓÚÇó½â·½³Ì (x^c = k) µÄ¸ù ¡£¸Ã¹«Ê½ÈçÏ£º

$$x_{n+1} = x_n – \frac{x_n^c – k}{cx_{n}^{c-1}}$$

ÆäÖУº

  • (x_n) ÊÇµÚ n ´Îµü´úµÄ½üËÆÖµ
  • (c) Êdz£Êý

֤ʵ

Ҫ֤ʵ k ´Î·½Å£¶Ùµü´ú¹«Ê½£¬ÎÒÃÇʹÓÃÅ£¶Ùµü´ú¹«Ê½µÄ»ù±¾ÐÎʽ£¬½« (x^c – k) ÊÓΪ´ýÇó½âµÄº¯Êý (f(x)) ¡£Ôò£º

$$f(x) = x^c – k$$

$$f'(x) = cx^{c-1}$$

´úÈëÅ£¶Ùµü´ú¹«Ê½ÖУ¬»ñµÃ£º

$$x_{n+1} = x_n – \frac{x_n^c – k}{cx_{n}^{c-1}}$$

ÊÕÁ²ÐÔ

k ´Î·½Å£¶Ùµü´ú¹«Ê½µÄÊÕÁ²ÐÔÈ¡¾öÓÚ c µÄÖµ ¡£µ± (0 1) ʱ£¬µü´ú¹«Ê½¿ÉÄܲ»»áÊÕÁ² ¡£

Ó¦ÓÃ

c µÄ k ´Î·½Å£¶Ùµü´ú¹«Ê½ÔÚÊýѧ¡¢ÎïÀíºÍ¹¤³ÌµÈÁìÓòÓÐÆÕ±éµÄÓ¦Óà ¡£ÀýÈ磺

  • ÇóÃÝÊýµÄ¸ù£¨(c) ΪÕûÊý£©
  • ÇóÈý½Çº¯ÊýµÄÄ溯Êý
  • Çó΢·Ö·½³ÌµÄ½üËƽâ

ÒÔÉϾÍÊÇcµÄk´Î·½Å£¶Ùµü´ú¹«Ê½µÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡

ÃâÔð˵Ã÷£ºÒÔÉÏչʾÄÚÈÝȪԴÓÚÏàÖúýÌå¡¢ÆóÒµ»ú¹¹¡¢ÍøÓÑÌṩ»òÍøÂçÍøÂçÕûÀí£¬°æȨÕùÒéÓë±¾Õ¾Î޹أ¬ÎÄÕÂÉæ¼°¿´·¨Óë¿´·¨²»´ú±í×ðÁú¿­Ê±¹ÙÍøµÇ¼ÂËÓÍ»úÍø¹Ù·½Ì¬¶È£¬Çë¶ÁÕß½ö×ö²Î¿¼ ¡£±¾ÎĽӴýתÔØ£¬×ªÔØÇë˵Ã÷À´ÓÉ ¡£ÈôÄúÒÔΪ±¾ÎÄÇÖÕ¼ÁËÄúµÄ°æȨÐÅÏ¢£¬»òÄú·¢Ã÷¸ÃÄÚÈÝÓÐÈκÎÉæ¼°ÓÐÎ¥¹«µÂ¡¢Ã°·¸Ö´·¨µÈÎ¥·¨ÐÅÏ¢£¬ÇëÄúÁ¬Ã¦ÁªÏµ×ðÁú¿­Ê±¹ÙÍøµÇ¼ʵʱÐÞÕý»òɾ³ý ¡£

Ïà¹ØÐÂÎÅ

ÁªÏµ×ðÁú¿­Ê±¹ÙÍøµÇ¼

18523999891

¿É΢ÐÅÔÚÏß×Éѯ

ÊÂÇéʱ¼ä£ºÖÜÒ»ÖÁÖÜÎ壬9:30-18:30£¬½ÚãåÈÕÐÝÏ¢

QR code
ÍøÕ¾µØͼ