д³öÅÌËãÅ£¶Ùµü´ú¹«Ê½
Å£¶Ùµü´ú¹«Ê½ÓÃÓÚÇó½â·½³ÌµÄ¸ù£¬Æäµü´ú¹«Ê½Îª£ºÑ¡ÔñÒ»¸öÀë·½³Ì¸ù½Ï½üµÄ³õʼֵ (x_0)¡£µü´ú£ºÊ¹Óù«Ê½ (x_{n+1} = x_n – \frac{f(x_n)}{f'(x_n)}) Öظ´ÅÌËã¡£×èÖ¹µü´ú£ºµ±ÏàÏà½üËÆÖµµÄ²îСÓÚÈݲî»òÁè¼Ý×î´óµü´ú´ÎÊý¡£
Å£¶Ùµü´ú¹«Ê½
Å£¶Ùµü´ú·¨£¬ÓÖ³ÆÇÐÏß·¨£¬ÊÇÒ»ÖÖÓÃÓÚÇó½â·½³Ì¸ùµÄÊýÖµÒªÁ죬Æäµü´ú¹«Ê½ÈçÏ£º
$$x_{n+1} = x_n – \frac{f(x_n)}{f'(x_n)}$$
ÆäÖУº
- (x_{n+1}) Êǵü´úµÄÏÂÒ»¸ö½üËÆÖµ
- (x_n) ÊÇÄ¿½ñµÄ½üËÆÖµ
- (f(x)) ÊÇÄ¿µÄ·½³Ì
- (f'(x)) ÊÇÄ¿µÄ·½³ÌµÄµ¼Êý
ÔõÑùʹÓÃÅ£¶Ùµü´ú¹«Ê½
- Ñ¡Ôñ³õʼֵ£ºÑ¡ÔñÒ»¸öÀë·½³Ì¸ù½Ï½üµÄ³õʼֵ (x_0)¡£
- µü´ú£ºÊ¹Óõü´ú¹«Ê½ (x_{n+1} = x_n – \frac{f(x_n)}{f'(x_n)}) Öظ´ÅÌË㣬ֱµ½Öª×ã×èÖ¹×¼Ôò¡£
-
×èÖ¹×¼Ôò£ºµ±Öª×ãÒÔÏÂÌõ¼þ֮һʱ×èÖ¹µü´ú£º
- Á½¸öÏàÏà½üËÆÖµÖ®²îСÓÚ¸ø¶¨µÄÈݲî
- Áè¼Ý×î´óµü´ú´ÎÊý
ʾÀý
Çó½â·½³Ì (x^2 – 5 = 0)¡£
- ³õʼֵ£º(x_0 = 2)
-
µü´ú£º
- (x_1 = x_0 – \frac{x_0^2 – 5}{2x_0} = 2.5)
- (x_2 = x_1 – \frac{x_1^2 – 5}{2x_1} \approx 2.24)
- (x_3 = x_2 – \frac{x_2^2 – 5}{2x_2} \approx 2.236)
- ÓÉÓÚÒ»Á¬Á½´Îµü´úµÄ½üËÆÖµÖ®²îСÓÚ 0.001£¬Òò´Ë×èÖ¹µü´ú¡£
- ½üËƽ⣺(x \approx 2.236)
ÒÔÉϾÍÊÇд³öÅÌËãÅ£¶Ùµü´ú¹«Ê½µÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡
ÃâÔð˵Ã÷£ºÒÔÉÏչʾÄÚÈÝȪԴÓÚÏàÖúýÌå¡¢ÆóÒµ»ú¹¹¡¢ÍøÓÑÌṩ»òÍøÂçÍøÂçÕûÀí£¬°æȨÕùÒéÓë±¾Õ¾Î޹أ¬ÎÄÕÂÉæ¼°¿´·¨Óë¿´·¨²»´ú±í×ðÁú¿Ê±¹ÙÍøµÇ¼ÂËÓÍ»úÍø¹Ù·½Ì¬¶È£¬Çë¶ÁÕß½ö×ö²Î¿¼¡£±¾ÎĽӴýתÔØ£¬×ªÔØÇë˵Ã÷À´ÓÉ¡£ÈôÄúÒÔΪ±¾ÎÄÇÖÕ¼ÁËÄúµÄ°æȨÐÅÏ¢£¬»òÄú·¢Ã÷¸ÃÄÚÈÝÓÐÈκÎÉæ¼°ÓÐÎ¥¹«µÂ¡¢Ã°·¸Ö´·¨µÈÎ¥·¨ÐÅÏ¢£¬ÇëÄúÁ¬Ã¦ÁªÏµ×ðÁú¿Ê±¹ÙÍøµÇ¼ʵʱÐÞÕý»òɾ³ý¡£